导语
近年来,随着云计算、大数据、人工智能、区块链等创新技术的发展与应用,数据作为生产要素的价值日益体现,算法在经济活动中的重要性日趋凸显。本文着重探讨了算法在经济领域的影响,并定义了一种以智能算法为核心的新型经济模式:算法经济。不过,算法隐含风险,因此要以监管科技应对新型科技,加强算法监管,这既是顺应之策,又是必然之举。
文/中国证监会科技监管局局长姚前
算法是指一系列解决问题的清晰计算机指令。在当今信息时代,算法已渗透到社会各个领域。克里斯托弗·斯坦纳在其名著《算法帝国》里对算法推崇备至,认为构建算法模仿,超越并最终取代人类,是21世纪最重要的能力,未来属于算法和其创造者。
算法经济
商品经济的根本是买与卖、供与需的匹配。由于信息不对称,市场主体需要搜寻合适的对手方进行交易,这将耗费大量成本。某种意义上,搜寻技术决定了交易空间。在没有互联网之前,人们依靠广播、电视等媒体广告搜寻交易对手。到了互联网时代,人与人之间的物理隔绝与时空限制得到大幅解放,出现了电子商务这一全新的经济模式。“网络购物,只有想不到,没有买不到”。网购已深入人们生活的方方面面,供与需的匹配得到极大改善。
应该说在互联网经济的初期,以连接产生网络效应为主,数据价值尚未显现,算法还只是辅助,电商活动高度依赖平台公司的组织与管理。近年来,随着云计算、大数据、人工智能、区块链等创新技术的发展与应用,数据作为生产要素的价值日益体现,算法在经济活动中的重要性日趋凸显。
- 算法拓展了互联网经济的深度与广度。比如,基于平台上的交易数据、用户自身提供的数据以及其他另类数据,开展大数据分析,对用户进行“千人千面”画像,深入分析每个消费者个体的行为模式和特点,形成独特的客户洞察,开展精准营销、服务和风控;基于算法的智能调度,使得云计算很好地解决了实时海量交易和数据处理的性能要求;智能客服提升客户服务的响应速度,降低成本,提高效率。
- 出现了以算法为核心的新型经济模式,也可称之为算法经济。算法经济是指人们将生产经验、逻辑和规则总结提炼后“固化”在代码上,使生产经营、交易融资等活动无须人工干预,自动执行的智能化经济模式。
算法经济的典型代表是算法金融。互联网平台企业依靠用户生态,以数据为核心,以算法为驱动,以计算资源为保障,在互联网平台上开展和提供支付、贷款、财富管理、保险等各类金融服务。依靠强大的数据分析能力,开展智能营销、智能风控、智能投顾、智能理赔,为客户提供量身定制的金融服务和产品,并将专家分析决策经验与人工智能技术融合,通过风控模型的自学习、自进化分析过程,实现基于海量数据机器学习的实时复杂风控,帮助合作金融机构更好地量化风险,更好地应对了解你的客户(Know your customer,简称KYC)、反欺诈、反洗钱、信用风险等关键业务风险。
算法经济的典型代表还有共享经济,如类似优步(Uber)、滴滴打车的共享平台。在这些平台上,生产者与消费者直接进行动态、多变、复杂的网状连接和点对点交易,而有效支撑这些网状连接和点对点交易的则是平台企业所设计、维护和运营的强大算法。并且随着环境和市场的变化,算法不断调整和优化。虽然共享平台的算法机制背后仍没有脱离传统企业的组织形态,平台规则和算法由企业设计、维护和运营,但算法已在很大程度上取代了企业的组织、管理与协调功能,日益成为关键核心。某种意义上,共享平台的算法机制或可看作企业所提供的SaaS服务(Software as a Service,应用即服务)。
如果说共享平台的算法机制还“残余”着企业的影响,去中介化、去组织化的加密经济则干净利落“抹除”了企业的“痕迹”,完全依靠算法开展经济活动。这是一种“无组织形态的组织力量”。加密经济以密码学技术为基础,通过分布式共识机制,“完整、准确、难以篡改”地记录价值转移(交易)的全过程,构建了多中心化的应用或商业逻辑,并且通过智能合约,保证业务逻辑的自动强制执行,整个流程无需管理人员介入,自动完成数字化经济活动。加密经济不仅有技术逻辑层上的支撑,又有经济逻辑层上的保障,再加上区块链、第五代移动通信技术(5G)、物联网、大数据、人工智能(Artificial Intelligence,简称AI)等技术的赋能,有望成为具有巨大潜力的新兴经济模式。截至目前,基于“区块链+5G+物联网”的加密经济模式已在仓单物流、农业溯源、资产数字化、数字金融等领域落地应用。
与算法经济相伴随的是算法货币。作为交易的一般等价物,货币理应是大家一致同意的社会共识,否则无法广泛流通。在许多时候,共识通过制度予以确立,比如法定货币。
比特币虽然难以成为真正的货币,但它创造了一种完全基于算法的货币型态:经共识验证的难以篡改的可追溯的“未花费过的交易输出”(UTXO),一定程度上启发了法定货币的数字化或曰代币化(Tokenize)。在价值上,法定数字货币是信用货币,在实现上则很可能是算法货币。
算法隐含风险
算法经济大幅改善市场经济的匹配效率和交易成本。人们一方面欢迎和享受智能算法带来的便利,另一方面却担心被智能算法替代,导致个人价值丧失。不仅如此,随着算法经济的快速发展,算法的渗透力和影响力越趋强大,其背后隐含的风险以及作恶的可能引起了关注。
首先是算法滥用。算法规则的背后是商业利益。为了追求利益最大化,算法有可能违背社会公平、道德和人性,比如大数据杀熟,同样的商品或服务,老客户的价格反而比新客户要贵。只推荐给人们能潜在带来商业利益的东西,而不是最适合、最恰当的东西。可能滥用人性弱点,过度激发、劝服、诱导客户,使人习惯于被喂养,不自觉地对算法投放的产品沉迷上瘾。只有算法逻辑,没有考虑人性,将人“异化”为简单的数据、商品和工具。算法的具体原理和参数只有运营企业的少部分人才能知道,有可能产生利益侵占问题,曾经某共享打车的动态调价算法就被质疑过企业是否在利用算法来谋取私利。甚至,企业可能利用算法作恶,比如为了扩大流量,推送耸人听闻的虚假信息;推荐虚假产品。
其次是算法偏见。算法的数据可能不一定全面,片面的数据得到的结果必然导致某种偏见。算法的设计者是人,算法设计师乃至企业管理者、价值观的偏见可能被嵌入算法。算法的“技术光环”容易让人盲从所谓的“科学”,但实质上有些算法却存在很大程度的不可解释性,比如类似“黑箱子”的机器学习算法;机器学习算法侧重于相关性分析,而不是因果分析,可能产生错误的勾连与判断;基于历史数据的机器学习算法隐含着“过去决定未来”逻辑,以历史宿命论定义和标签每个人,某种程度上也是一种偏见。
“算法鸿沟”也值得重视。算法通常是隐秘的,或是专利,或是商业秘密。即便公开,因技术门槛,也不是每个人都能看懂。这就形成新的“数字鸿沟”。不懂算法的人群在利益受损时有可能并不知情,即便知情,也可能无力举证和对抗。
在特定领域,算法还可能引致特定风险。比如在金融领域,智能算法给出的资产配置建议有可能是推荐了与金融机构自身利益高度攸关的产品,涉嫌利益侵占;智能算法形成“信息茧房”,强化投资者偏见,容易掩盖金融风险复杂性,引诱过度消费和负债,甚至误导投资者;智能算法若存在歧视,则损害投资者公平性;智能算法趋同导致“羊群效应”,加大金融顺周期风险等。
算法监管建议
各国监管部门高度关注算法隐含的风险。
- 欧盟《一般数据保护条例》(General Data Protection Regulation,简称GDPR)第22条对自动化决策加以限制,如果某种包括数据分析在内的自动化决策会对数据主体产生法律效力或对其造成类似的重大影响,数据主体有权不受上述决策的限制。针对智能算法在投资顾问中的应用,美国证券交易委员会(SEC)、美国金融业监管局(FINRA)、澳大利亚证券和投资委员会(ASIC)出台了具体的智能投顾监管指引。
- 2018年我国资管新规《关于规范金融机构资产管理业务的指导意见》提出要避免智能算法的顺周期性风险,要求金融机构应当根据不同产品投资策略研发对应的人工智能算法或者程序化交易,避免算法同质化加剧投资行为的顺周期性,并针对由此可能引发的市场波动风险制订应对预案。因算法同质化、编程设计错误、对数据利用深度不够等人工智能算法模型缺陷或者系统异常,导致“羊群效应”、影响金融市场稳定运行的,金融机构应当及时采取人工干预措施,强制调整或者终止人工智能业务。
- 2020年9月,国际证监会组织(International Organization of Securities Commissions,简称IOSCO)市场中介机构委员会发布中介机构如何应用人工智能和机器学习的咨询报告,提出具体指导方针,以协助IOSCO成员建立适当的监管框架,监督市场中间商和资产管理人应用人工智能和机器学习。
- 即将出台的欧盟《数字服务法案》(Digital Services Act,简称DSA)拟授权“数字服务协调员”(Digital Services Coordinators)监管大科技公司的合规情况,其中包括用于定向或精准广告的算法是否合法,并要求平台企业公布其算法如何自动向在线客户推送内容或商品的细节。
- 2020年12月中共中央印发《法治社会建设实施纲要(2020-2025年)》,提出要制定完善算法推荐、深度伪造等新技术应用的规范管理办法,要加强对大数据、云计算和人工智能等新技术研发应用的规范引导。
总的来说,智能算法已在科技大公司(Bigtech)大量采用,考虑到其生态规模巨大、潜在风险和社会影响不容忽视。而我国算法监管制度正逐步完善和健全,但具体内容有待细化完善。
从机理看,算法监管的具体内容至少包括六方面:
- 信息披露,即作为算法的设计者和控制方,科技大公司及其他利益相关者应该披露算法设计、执行、使用过程中可能存在的偏见和漏洞、数据来源以及可能对个人和社会造成的潜在危害。
- 解释,即作为采用算法自动化决策的机构,科技大公司及其他利益相关者有义务解释算法运行原理以及算法具体决策结果。
- 留痕与可审计,即算法系统的设计、测试、运行表现及变动留有记录,全程监测,并可审计。
- 质询和申诉,即确保受到算法决策负面影响的个人或组织享有对算法进行质疑并申诉的权力。
- 内部治理。科技大公司应建立清晰、有效的内部治理框架、内部控制机制和责任体系,防止算法滥用,防范算法风险,并提高算法对抗性,避免算法攻击。
- 加强行业自律。通过行业自律机制,加强算法道德和算法伦理建设。
结语
不可否认,算法催生了新的经济模式,带来社会整体效率提升,有其独特优势。但近年来,算法滥用、算法作恶、算法道德、算法伦理等问题却引起广泛关注。卓别林电影《摩登时代》对机器操控产业工人的讽刺,以及马克思著作《1844年经济学哲学手稿》对机器工业化时代人类“异化”的警示提醒我们,就像机器流水线凌驾于工人之上,算法亦有可能凌驾于芸芸众生之上,其中风险值得我们关注与警惕。为此,加强算法监管,以监管科技应对新型科技,既是顺应之策,又是必然之举。END
本文仅代表作者个人学术观点,不代表所在机构意见。本文刊发于《清华金融评论》2021年1月刊,2021年1月5日出刊,
本文编辑:谢松燕
https://www.jianshu.com/p/52a3e4badcfb
姚前的思考主要在社会管理,从政府出发的角度。我的思考主要在商业市场。
算法如何确定产权
现有的方式是通过著作权,知识产权来保护,但这种工业时代的产权保护方式并不适用数字经济。一个是效率低,监管成本高,侵权容易,维权困难。
那么有没有新的技术来为算法确权,保证算法主体的利益呢?
答案是:有
先问一个问题,智能合约的本质是什么?
王嘉平的解释:一段有待执行的不可篡改的代码。
为什么不可篡改呢?因为它是基于区块链运行的。
通俗的说就是算法上链嘛!
这就是答案,把算法上链。算法发明人可以通过算法的使用次数,时长,甚至算法的商业收益来进行收费。也因此而会产生独立程序员群体,就好比今天的独立设计师一样。
算法可以独立作为资本,而不是依附于应用和数据。
算法的产权主体
现有社会的产权主体,自然人,法人,也可以继续成为算法产权的主体。
产权关系
一个大型应用程序可能包含很多算法,在产权关系上会比较复杂。但是数字货币提供了一种简单的解决方案,通过交易完成调用。用的多,付的多。
推荐阅读